

Air Driven Liquid Pumps

Air Driven Gas Boosters Air Driven Compact Gas Boosters

PRODUCT LINE

Flow Meters

Electric Driven Gas Boosters

LIQUID PUMPS AIR OR GAS DRIVEN

Drive Piston(s) (Diameter)	<u>Area Ratios,</u> (Drive vs Boost Piston(s))		Basic Description and Benefits		
3"	8:1, 14:1, 25:1, 41:1, 81:1, 125:1, 220:1 Optional hand pump kit available.		The drive piston(s) is directly connected to the pump plunger or piston, separated by a high pressure seal. When shop air (or gas) is		
7 Models	Pressures to 22,500 PSI	7 lbs (max)	applied, the assembly reciprocates automatically, producing a positive displacement pumping		
5-3/4"	4:1, 10:1, 15:1, *20:1, 30:1, *30:1, 45:1, 60:1, *60:1, *90:1, 115:1, *120:1, 150:1, 205:1, *230:1, 300:1, *300:1, *410:1, 450:1, *600:1, **900:1 *two drive **Three drive pistons		action at the liquid end. This pumping action will stall and hold pressure whenever the system down stream is closed. The final pressure is estimated by multiplying drive air pressure x the area ratio of each model. Drive air or gas can range from 3 to 150 PSI. Benefits: Start/stop/restart under full load. Hold		
30 Models	Pressures to 80,000 PSI	30 lbs (max)	maximum pressure indefinitely. No electrical hazard in explosive or damp		
7"	7:1, *14:1, 35:1, 60:1, 100:1, *70:1, *120:1, *200:1 *two drive pistons		 environments. Rated for water, oils, solvents, and most liquefied gases to high pressure. Simple maintenance. Simple control in fluid power circuits. 		
8 Models	Pressures to 22,500 PSI 85 lbs (max)				
Typical Applications: • Hydrostatic testing - Tanks, piping, instruments. • Hydraulic clamps, presses, safety brakes. • Valve actuators - Compact power source, pneumatically driven. • Portable Tools - Compact power source for high pressure hydraulics.					

GAS BOOSTERS AIR OR GAS DRIVEN

	AIR OR OAS DRIVER			
<u>Drive Piston(s)</u> (Diameter)	Area Ratios, (Drive vs Boost Piston(s))		Basic Description and Benefits	
3"	**9:1, *23:1, **29:1 **Available in 2-stage & double acting configurations *Optional hand pump kit.		The drive piston(s) is directly connected to the booster piston(s), separated by a vented, triple seal system. The reciprocating action is the	
3 Model	Pressures to 3,450 PSI	11 lbs (max)	same as the liquid pumps. However, with most	
5-3/4"	4:1, 7:1, *14:1, *28:1, 30:1, 50:1, *60:1, 75:1, 92:1, *100:1, *150:1 *two drive pistons Note also that 17 different combinations of these ratios are available in standard 2 stage models		models final pressure is a function of drive pressure (air driven models only), gas inlet pressure and staging so commonly an external pressure control is recommend. Typical Applications: Bottled gas transfer.	
38 Models	Pressures to 30,000 PSI (2069 BAR)	53 lbs (24 kg) Max	High pressure gas testing.Rebreather Fillings or topping off.	
7"	7:1 Available in 2-stage & double acting configurations		 Gas injection - plastic forming or chemical process. Benefits: 	
2 Models	Pressures to 1,250 PSI	65 lbs (29.5 kg)	 Non lube dry gas pistons ensure hydrocarbon free gas output. 	
			Safe with flammable gases or oxygen.	
GAS BOOSTERS ELECTRIC DRIVEN			Type of Gas: Nitrogen (N2), Breathing Air (N2O2),	
<u>Horsepower</u>	Pressure Ratio		Helium (He), Nitrous Oxide (N ₂ O), Carbon	
2	7:1, 14:1, 30:1, 50:1, 92:1 Available in 2-stage and double acting configurations		Dioxide (CO ₂), Neon (Ne), Argon (Ar), Sulphur Hexafluoride (SF ₆), Oxygen (O ₂), Carbon Monoxide (CO), Hydrogen (H ₂),	
14 Models	Pressures to 15,000 PSI (1034 BAR)	145 lbs (66 kg) Max	Methane (CH ₄), Ethylene (C ₂ H ₄), Natural Gas (CH ₄)	

AIR PRESSURE AMPLIFIERS AIR DRIVEN

<u> </u>	1	
V		

<u>Drive Piston(s)</u> (Diameter)	<u>Area Ratios,</u> (Drive vs Boost Piston(s))		Basic Description and Benefits
3"	2.5:1, 4:1		These units are simplified versions of HII's
2 Models	Pressures to 675 PSI	7 lbs (max)	gas booster design in that they are designed to boost (amplify) the pressure of the same
5-3/4"	2:1, 5:1		gas (shop air) used for drive. Benefits: Solve low air pressure problems at
2 Models	Pressures to 1,250 PSI	36 lbs (max)	individual pneumatically actuated
7"	8:1		production machines.Provide higher test station air or nitrogen pressure economically.
1 Model	Pressures to 1,250 PSI	45 lbs (max)	

HIGH PRESSURE VALVES

Туре	<u>Relief</u> 4 Models	<u>Pilot Cutoff</u> 11 Models	Release/Unloading 5 Models	<u>Check</u> 6 Models to 2" NPT	On/Off 2 Models
Pressures to	60,000 PSI	25,000 PSI	20,000 PSI	20,000 PSI	10,000 PSI
					Available in N.C. and N.O. configurations

GAS RECEIVERS

15 models

Pressures to 20,000 PSI. Volumes to 900cu. inches

FLOWMETERS LIQUID OR GAS

Туре		Turbine		Variable Area			
		Inline	Insertion	Tangential	Standard	Sanitary	Hydraulic 5000PSI
Range Liquid		.03 - 15,000 GPM		.001 - 2.0 GPM	.2 - 100 GPM		0.00.0014
Halige	Gas	15,000) ACFM	2 ACFM	.2 - 400	SCFM	0 - 80 GPM
			la de	and the state of t			
Flow Computer		a de la constant de l	Totalizing, Rate Intrinsically saf Battery operate	e, Explosion _I			

PACKAGED SYSTEMS LIQUID OR GAS

Hydraulic	High Pressure O2/N2	High Pressure O2/N2	Air Amplifier with 200 PSI
Test Unit	Dual Cylinder Hand Truck	Portable Unit	Receiver and Controls

Detailed Literature Available

Catalogs	Number	Includes
Air Amplifiers - Air Driven	AA500	Principle of operation, replacing dedicated air compressor in large plants, installation, controls, schematics, and packaged systems. 4 Pages
Gas Boosters - Electric Driven	EGB-100	Principal of operation, features & benefits, applications, optional controls, dimensional data, performance curves and specifications. 4 Pages
Flowmeters - Liquid or Gas	FM-100	Principle of operation, applications, design features, flow ranges and sizing guides with calculations. How to order. 58 Pages
Gas Boosters - Air or Gas Driven	GB500	Principle of operation, benefits. Applications, typical schematics, selection tables, performance curves and modifications. 14 Pages
Compact Gas Booster - Air or Manually Driven	GB504 GB505	Principal of operation, features & benefits, applications, optional controls, dimensional data, performance curves and specifications. 2 Pages each
Liquid Pumps - Air or Gas Driven	LP500	Principle of operation, benefits. applications, installation detail, chart of rated pressures, port sizes, and weights, performance curves, standard modifications. 16 Pages
Packaged Systems - Pumps, Boosters and Air Amplifiers	SP-100A	11 Packaged systems with ordering guides to fit each to specific applications 8 pages
High Pressure Valves and Components	V-100	Relief, pilot cutoff, unloading, check, plus gas receivers and needle valves. 2 pages

